NONLINEAR DYNAMICS ON THE CHEAP IN THE JUNIOR LABORATORY

Richard Krantz^{*}, Nick Hoen^{*}, Julie Zimmerman^{*}, Randall Tagg[§], and John Carlson[§]

*Department of Physics, Metropolitan State University of Denver, 3123 North Classroom , Denver, CO 80204 § Department of Physics, University of Colorado Denver, 3801 North Classroom, Denver, CO 80204

Background

- This past spring (2015) three of us (RK, RT, JC) team-taught a Junior level laboratory in which physics majors are required, over two semesters, to complete experiments in 8 out of 10 main topic areas of physics.
- As of the beginning of the spring 2015 semester, a satisfactory Mechanics/Nonlinear Dynamics experiment supplied with instructions had not been identified.
- Towards the end of the semester two Metropolitan State University of Denver students (NH, JZ) expressed an interest in investigating the nonlinear dynamics of Duffing's oscillator.

Why Duffing's Oscillator?

- Rich History: $\ddot{\theta} + \delta \dot{\theta} + \beta \theta + \alpha \theta^3 = \gamma \cos \omega t.$
- Wide Ranging Applications:
 - Science, engineering, economics, even music
 - Defies description by "standard" methods (e.g. superposition)
- Can be applied to a range of experiments
- Exhibits Nonlinear Dynamics/Chaos

Novel Design

Other Designs

(Metro Student – Dane Beck)

Experimental Set-Up Basic Schematic

From the Literature

DATA COLLECTION

- Pasco Rotary Sensor
- Data Studio Software (1000 Hz sample rate)
- Sinusoidal Function Generator to Drive the Helmholtz Coils (1 – 2 Hz)
- Support Springs to Vertically Balance Permanent Magnets on Flexible Rod (Inverted)
- 20 min. runs
- Data taken at 0.025 sec. intervals
- Velocity: time-centered average with 0.05s time step

Analysis

- 1.2 million data points per typical run
 - Open source software: SciLab (developed in Europe)
 - MatLab like
 - (<u>http://www.scilab.org/</u>
- SciLab for simulation/analysis:
 - Scilab is free and open source software for numerical computation providing a powerful computing environment for engineering and scientific applications.
 - Scilab is released as open source under the <u>CeCILL license</u> (GPL compatible), and is <u>available for download</u> free of charge.

Experimental Time Series – 1.2 Hz

Theoretical Time Series

Experimental Phase Plot – 1.2 Hz

Theoretical Phase Plot

Experimental Poincare Section – 1.2 Hz Strange Attractor

Theoretical Poincare Section Strange Attractor

Poincare Theoretical

Poincare Experimental – 1.2 Hz (0.000, 0.083, 0.167, 0.250, 0.333, 0.417, 0.500, 0.583, 0.667, 0.750 [t/T])

Other Behavior (Time Series: 1.4 Hz)

Other Behavior

Phase Plot – 1.4 Hz

Not Chaotic

•

Poincare Section – 1.4 Hz

• Period 6

Discussion

- Novel Duffing's oscillator apparatus
- Simple mechanism shows chaos
- Rich experiment with reasonable results
- Apparatus is CHEAP and easy to build from parts in most undergraduate laboratories
- Can be coupled with simulation
- And did I mention it was really cheap!

References

- J.E. Berger and G. Nunes Jr., "A mechanical Duffing oscillator for the undergraduate laboratory." Am. J. Phys. **65**,841, (1997).
- H.Meissner and G. Schmidt, "A simple experiment for studying the transition from order to chaos," Am. J. Phys. **54**, 9(1986).
- http://www.scilab.org/scilab/about
- K. Briggs, "Simple experiments in chaotic dynamics," Am. J. Phys. **55**, 12 (1987).
- A. Cromer, "Stable solutions using the Euler approximation," Am. J. Phys. 49, 455 (1981).
- R. Krantz, N. Hoen, J. Zimmerman, R. Tagg, and J. Carlson, Nonlinear Dynamics on the Cheap in the Junior Laboratory, 2015 BFY Proceedings [College Park, MD, July 22-24, 2015], edited by M. Eblen-Zayas, E. Behringer, and J. Kozminski, doi:<u>10.1119/bfy.2015.pr.012</u>.

